

DIGITAL PROTECTION, AUTOMATION, MEASUREMENT, CONTROL, RECORDING AND COMMUNICATION

- extCZIP®-PRO extended version of the CZIP® system
 - flexibility to choose the number of available input and output ports,
 - additional communication ports.

LUMEL

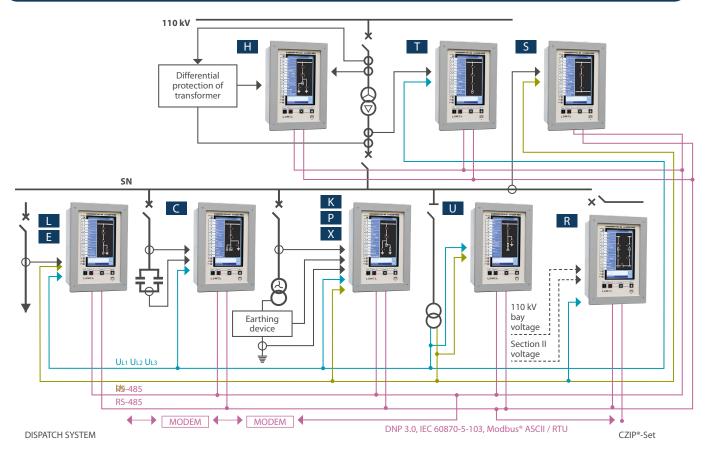
extCZIP®-PRO digital protection relays for medium voltage switchgear and **extCZIP®-2R PRO** automatic transfer switch system are new versions of devices belonging to the **CZIP®** system. The **extCZIP®-PRO** series protection relays are characterized by great flexibility in choosing the number of available input, output and communication ports.

The **CZIP**[®] system devices are 100% Polish products, developed in cooperation with the Institute of Electrical Power Engineering of the Poznań University of Technology.

- extCZIP[®]-PRO digital protection relay for MV switchgear for power utilities and industrial facilities
- extCZIP®-2R PRO ATS system implementation (automation transfer switch) for MV switchgear
- CZIP[®]-Set utility software for operating all CZIP[®] system devices, including extCZIP[®]-PRO

LUMEL

Unique protection functions of the CZIP® system


- underimpedance protection against phase faults
- detection of high-impedance earth faults (up to 8 k Ω),
- selective protection against earth faults in earthing transformer bays and earthing circuits.

CHARACTERISTICS

- software for all MV (medium voltage) substation bays in one extCZIP®-PRO device,
- ATS system (automatic transfer switch) implemented in **extCZIP®-2R PRO**,
- predefined settings of the protection functions and automation systems,
- programmable logic support (50),
- colour LCD TFT 7" screen, 800x480, with a touch panel,
- bay synoptic diagram presentation with mapping of the switch states,
- switch control from the synoptic screen and using telemechanics (up to 11 switches),
- presentation of the recorded events, measurement values and input or output states,
- 28 or 56 opto-isolated binary inputs,
- **20** or 40 output relays,
- 14 bi-colour programmable LEDs, with on-screen description,
- ON and OFF buttons to control the bay circuit breaker from the device keyboard,
- 512 MB internal memory for recording samples of disturbance recorder, event recorder, energy measurements,
- time synchronization via Ethernet network using SNTP
- independent communication interfaces: USB, 2 x RS-485, Ethernet 10/100 BASE-TX (optional fibre optic port and CAN-BUS/RS-485),
- communication protocols: DNP 3.0, IEC 60870-5-103 and 104, IEC 61850, Modbus[®] ASCII / RTU (optional PPM2 protocol on CAN-BUS/RS-485 port),
- 2-bit status monitoring of all switches,
- optional phase current measurement inputs adapted for operation with low-power current transformers based on Rogowski coils.

LUMEL

CONNECTION DIAGRAM

FUNCTIONS

Protection functions	L	E	Z	Т	C	K	Р	Х	U	S	Н	R
Three-stage overcurrent protection against phase faults	•1	•1	•1									
Directional protection for each stage of overcurrent protection	•	•	•									
Current asymmetry criterion based on the negative sequence current component	•	•	•	•		•	•	•				
Instantaneous switch onto fault protection	•	•	•	•	•	•	•	•		•	•	
Underimpedance protection against phase faults	•	•	•									
Earth-fault overcurrent	•	•	•	•	•					•	•	
Residual overvoltage as start-up element for other protection functions	•	•	•			•	•	•		•		
Residual overvoltage as autonomous criterion		•	•	•					•			
Earth-fault overcurrent in the neutral point's earthing circuit						•	•	•				
Earth-fault admittance	•	•	•									
Earth-fault admittance incremental	•	•	•									
Earth-fault conductance (directional and non-directional)	•4	•4	•4							•2		
Earth-fault susceptance directional	•	•	•									
Wattmetric-based earth-fault IOP>				•								
Adaptive earth-fault conductance RG0adapt. (detection of high-impedance faults)	•	•	•									
Overfrequency		•3	•3									
Underfrequency		•3	•3						•			
Rate of change of frequency df/dt		•3	•3						•			
Overcurrent busbar protection blocking element	•	•	•		•	•	•	•	•			
Directional protection for overcurrent busbar protection blocking element	•	•	•									
Overcurrent relay cooperating with busbar protection										•		
Decision element of busbar protection			•	•								
Selective protection against earth faults in earthing transformer and earthing circuit												

LUMEL

Protection functions	L	E	Z	Т	C	K	Р	Х	U	S	Н	R
Overvoltage		•3	•3	•	•							
Undervoltage		•3	•3									
Overload overcurrent				•	•						•	
Time-delay overcurrent against phase faults					•							
Overcurrent against internal faults					•							
Phase overvoltage (criterion: phase-to-phase voltage)									•			
Phase undervoltage (criterion: phase-to-phase voltage)									•			
Overcurrent-logic busbar protection			•	•						•		
Short-circuit overcurrent against internal phase faults						•	•	•			•	
Directional overpower P3>		•	•									
Directional overpower Q3>		•	•									
Voltage asymmetry				•								
Automation systems	L	Е	Z	Т	С	K	Р	Х	U	S	Н	R
Automatic reclosing	•	•	•									
Circuit breaker failure protection			•	•						•		
Capacitor bank controller				•								
Capacitor bank switching automation (clock)					•							
Underfrequency load shedding - 3 stages									•			
Distributed underfrequency load shedding (applied for line bays)		•	•									
Underfrequency load shedding and restoration									•			
Active current forcing scheme with a controller						•						
Resistor controller							•					
Others	L	E	Z	Т	С	К	Р	Х	U	S	Н	R
Cooperation with underfrequency load shedding automation or underfrequency load shedding and restoration system												
Cooperation with circuit breaker failure protection	•	•	•		•	•	•	•			•	
Cooperation with automatic transfer switch			•	•			•	•		•	•	
Operation of automatic transfer switch function for both hot and cold reserve configurations												•
Cooperation with gas detector relay				•		•	•	•				
Cooperation with external differential protection											•	
Second harmonic bias for phase overcurrent protection	•	•	•									
Synchronism check function when switching on a line with distributed generation		•5	•5									

¹ Settings' change possible after operational switching of the first, second or third stage.

² Non-directional.

³ With separate automatic reclosing system.

⁴ Built-in adaptive algorithm supporting effective detection of high-impedance earth faults.

⁵ Optional function.

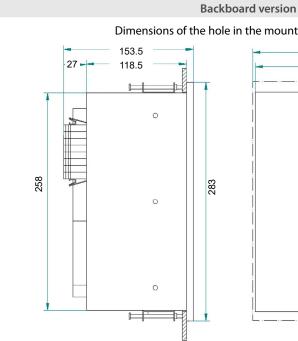
extCZIP®-PRO purpose by bay

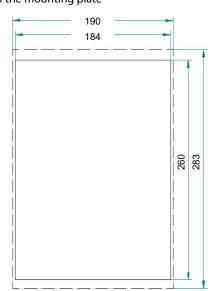
- line bay without local power plant
- Ine bay with local power plant (also wind power)
- incoming/ outgoing feeder bay
- MV side of the 110 kV/MV transformer
- c capacitor bank
- auxiliary services in compensated networks (also networks with an insulated neutral point)
- auxiliary services in networks with resistor-earthed neutral point
- auxiliary services in networks with parallel reactor resistor earthing system
- voltage measurement
- s busbar coupler
- I 110 kV side of the 110 kV/MV transformer

extCZIP®-2R PRO purpose

ATS system (automatic transfer switch)

extCZIP®-PRO

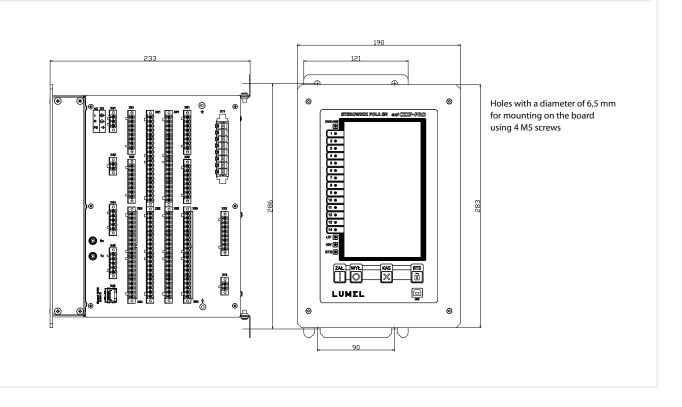

PROTECTION RELAY


TECHNICAL DATA

Phase current inputs		
Rated current I _n	5 A c	or 1 A
Current range	01	92 A
Measurement error 0 A > 0,3550 A < 192 A	< 10% < 1	,5% < 10%
Rated frequency f _n	50	Hz
Power consumption at $I=I_n$	< 0,	5 VA
Phase voltage inputs		
Rated voltage U _n	10	0 V
Voltage range	01	30 V
Measurement error in the measurement range	< 1	,5%
Rated frequency f _n	50	Hz
Power consumption at U=U _n	< 0,	4 VA
Zero-sequence current inputs		
Rated current I _{on}	0,5	5 A
Current range	0	5 A
Measurement error 0,023,5 A	< 1	,5%
Rated frequency f _n	50	Hz
Power consumption at I=I _{on}	< 0,	4 VA
Zero-sequence voltage inputs		
Rated voltage U _{on}	10	0 V
Voltage range	01	30 V
Measurement error in the measurement range	< 1	,5%
Rated frequency f _n	50	Hz
Power consumption at $U=U_{0n}$	< 0,	4 VA
Binary inputs		
Rated input voltage	24 V	220 V
Input voltage range	1732 V	88253 V
	< 3 mA	< 3 mA

Output relays			
Rated voltage		220 V	24 V
Continuous current	carrying capacity	5	5 A
Breaking capacity of th	e induction circuit		
• 220 V DC, L/R = 40 i	ms	0,	,1 A
• 220 V AC, $\cos \varphi = 0$,4	2	2 A
Circuit breaker cor	nnection circuit	S	
Rated voltage		220 V	24 V
Continuous current	carrying capacity	8	3 A
Breaking capacity of th	e induction circuit		
• 220 V DC, L/R = 40 I	ms	1,2 A / 3	300 cycles
Duration of the swite	ch-off impulse	min	. 0,1 s
Duration of the swite	ch-on impulse	min	. 0,1 s
Other data			
Power supply			
• nominal auxiliary voltage	220 V DC 90220300 V	230 V AC 85230265 V	24 V DC 192465 V
 auxiliary power consumption 		< 20 W	
Environmental cond	itions		
 operating temperation 	ture	-10	.+55°C
storage temperature	re	-20	.+70°C
 altitude 		≤ 20	000 m
 relative humidity 		5	.95%
Weight			kg
Dimensions		backboa	x 153,5 mm ard version
) x 233 mm d version
Case protection deg	ree	IF	° 50

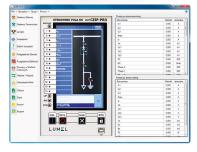
DIMENSIONS

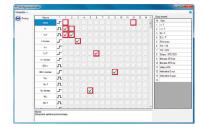

Dimensions of the hole in the mounting plate

LUMEL

LUMEL

Onboard version


CZIP[®]-Set *ext*CZIP[®]-PRO SOFTWARE


- software supplied with extCZIP®-PRO devices,
- excellent engineering tool supporting the user in specifying settings, configuring all available parameters, checking current configuration, measurement data and event recorder,
- a module enabling reading of samples saved in the disturbance recorder and their comprehensive analysis is also included in the software package,
- the tool includes a programmable logic editor, which enables adaptation of the extCZIP®-PRO device to individual needs and solutions,
- software enables communication with extCZIP®-PRO devices via RS-485 serial ports, optical fiber, USB, Ethernet,
- comparator of configuration files,
- synoptic editor standard connectors + 11 configurable ones,
- remote control of MV and LV switches via Ethernet (VPN).

ngik pengawanadinyek				- 0
M Peter 1			* Zérepietaria	
t Vester 2 Mitropatian	~~ 31	Value (5/7 Set lighty 1	de Postadai	
Pagin 2 MID (215)			and a second	2
Vegiar1			R Steperara	HILL NO.
Viglia 2 Telefina St2	TG 0 01	RS 0 United State	· Paratete	
Result SP2			W Local	
Vision 1 W10 00130	- [n]		R Dánamanta	1111
Value 2 ETC (Avery W.K.	11 ² 0 11 100 p	Vision (11.1) (he here y	() *Deaders	
Vietor 1 Dat			V Langer	
Vigita 1 Bel			🛠 Zánajmarta	Bank 1 local Bank 2 local Bank 2 local Bank 4 local
Vision 2 But		Vision (54) (by hypery 4	Parkabili	
Vigitie 2			1 Lands	

SEE ALSO: 0...... **EXTCZIP®-PV-PRO** INTEGRATED PROTECTION AND CONTROL RELAY Ō SCAN ME! 0..... ND45PLUS POWER QUALITY ANALYZER SCAN ME! MAIN CATALOG PRODUCTS AND SERVICES LUME 0 1. SCAN ME! WWW WWW.LUMEL.COM.PL O SCAN ME!

LUMEL S.A. Ul. słubicka 4, 65-127 zielona góra, poland Tel. +48 65 45 75 100